
VFSTR 96

CSE - III Year I Semester

Source: https://www.
javatpoint.com/compiler-
tutorial

22CS302 COMPILER DESIGN

Hours Per Week :

L T P C

2 2 0 3

PREREQUISITE KNOWLEDGE: Programming for problem solving- I & II and Formal languages and
automata theory.

COURSE DESCRIPTION AND OBJECTIVES:

This course introduces the foundation for understanding the theory and practice of compilers and
compiler design concepts; symbol table management, compiler parsing techniques, semantic analysis
and optimized code generation. This course introduced the concepts of lexical analyzer, parser, code
generation and code optimization techniques. The objective of this course is to enable the student to
acquire the knowledge of various phases of compiler such as lexical analyzer, parser, code optimization
and code generation.

MODULE-1

UNIT-1 8L+8T+0P=16 Hours

INTRODUCTION

The evolution of programming languages and basic language processing system; The structure of a
compiler; Bootstrapping; Lexical analyser and its Role; Input buff ering; Specifi cations and recognition
of tokens; LEX.

UNIT-2 8L+8T+0P=16 Hours

SYNTAX ANALYSIS

The role of the parser; Context-free grammars; Types of parsers with examples, YACC.

Semantic Analysis: Type checking; Syntax directed defi nition (SDD) and translation schemes (TS);
Application of SDD and TS; Translation of expressions and control fl ow statements.

PRACTICES:

 ● Implement various phases of compiler in detail. Write down the output of each phase for
expression Total = (b + c) + (b + c) * 50.

 ● Construct the symbol table for any input fi le with the help of LEX tool.

 ● Consider the context free grammar.

SSS+, SSS*, Sa and the string aa+a*.

i) Give the leftmost derivation for the string.

ii) Give the rightmost derivation of the string.

iii) Is the grammar ambiguous or not.

 ● Check whether the following grammar is a LL (1) grammar.

S iEtS | iEtSeS | a, E  b.

 ● Construct the FIRST and FOLLOW procedures for the following grammar.

S  Aa | bAC | dc | bda, A  d.

 ● Consider the grammar,

ETE’, E’+TE’ | €, T  FT’, T’ *FT’ | €, F  (E) | id.

Construct a predictive parsing table for the grammar given above. Verify whetherthe input string
id + id * id is accepted by the grammar or not.

VFSTR 97

CSE - III Year I Semester

SKILLS:
  Design parsers

using top-down
and bottom-up
approaches.

  Usage of tools
like LEX and
YACC.

  Design a simple
code generation

MODULE-2

UNIT-1 8L+8T+0P=16 hours

INTERMEDIATE REPRESENTATIONS

Three address code; Syntax tree; DAG.

Run-Time Environment: Storage organization; Stack allocation - Activation Trees, Activation Records.

UNIT-2 8L+8T+0P=16 Hours

OPTIMIZATION AND CODE GENERATION

The principal sources of optimization; Basic blocks and fl ow graphs; Local optimization; Global
optimization and loop optimization.

Code Generation: Issues in the design of code generator; Code-generation algorithm – register allocation
and assignment and peephole optimization.

PRACTICES:

 ● Translate the executable statements of the following C-code segment into three address code.

int i:

int a[10]

i = 0;

While (I <= 10) {

a[i] = i + 1; i + + ;

}

 ● Compute the DAG for the following three address statements. Considering this DAG as an
example, explain the process of code generation from DAG.

t1 = a + b t2 = c + d t3 = e – t2 t4 = t1 - t3

 ● What is Data fl ow equation? Represent the Data fl ow information for the following

a = b + c; d = c * d; e = a – c; f = d + e.

 ● Draw a fl ow graph for the below code. Show the basic blocks clearly in your control fl ow graph?

If (i>=0){

sum = B[0];

i = 0;

L1: if (A[i]< B[i]){

j=i;

L2:

if(B[i]>=0){

sum = sum +B[j];

}

j = j+1

if (j<N) goto L2;

}

i = i+1

if (i<N) goto L1;

}

VFSTR 98

CSE - III Year I Semester

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO
No.

Course Outcomes
Blooms

Level
Module

No.
Mapping
with POs

1
Apply the diff erent phases of compiler with various
examples.

Apply 1 1, 12

2
Design different parsing and optimization
techniques in the design of compile.

Design 1 1, 2, 12

3 Analyze the code optimization techniques. Analyze 2 1, 2, 3, 12

4
Analyze the algorithm for compiler segments
and evaluate the algorithm for optimized code
generation.

Analyze 2 1, 2, 3,12

TEXT BOOKS:

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeff rey D. Ulman, “Compilers: Principles,
Techniques and Tools”, 3rd Edition, Pearson Education, 2019.

2. Thomson, “Introduction to Theory of Computation”, 2nd Edition, Sipser, 2016.

REFERENCE BOOKS:

1. V. Raghavan, “Principles of Compiler Design”, 2nd Edition, Mc Graw Hill, 2016.

2. John R.Levin, Tony Mason and Doug Brown, “Lex & YAAC”, 2nd Edition, O Reilly, 2012.

3. Ms. Manisha Bharambe, “Compiler Construction”, 2nd Edition, Nirali Prakashan, 2017.

